Comparison of shadow models and their impact on precise orbit determination of BeiDou satellites during eclipsing phases

Author:

Zhang Yan,Wang XiaoyaORCID,Xi Kewei,Li Zhen

Abstract

AbstractSolar radiation pressure (SRP) is an extremely critical perturbative force that affects the GNSS satellites’ precise orbit determination (POD). Its imperfect modelling is one of the main error sources of POD, whose magnitude is even to10−9 m/s2. The shadow factor (i.e., eclipse factor) is one crucial parameter of SRP, generally estimated by the cylindrical model, the conical model, or shadow models considering the Earth’s oblateness and the atmospheric effect, such as the Perspective Projection Method atmosphere (PPMatm) model and Solar radiation pressure with Oblateness and Lower Atmospheric Absorption, Refraction, and Scattering Curve Fit (SOLAARS-CF) model. This paper applies the former four shadow models to determine the corresponding precise orbit using BeiDou satellites’ ground-based observation, and then compared and assessed the orbit accuracy through Satellite Laser Ranging (SLR) validation and Inter-Satellite Link (ISL) check. The results show that the PPMatm model’s accuracy is equivalent to the SOLAARS-CF model. Compared with the conical shadow model, SLR validations show the orbit accuracy from the PPMatm and SOLAARS-CF model can be generally improved by 2–10 mm; ISL range check shows that the Root Mean Square (RMS) can be decreased by 2–7 mm. These results show that the shadow model in GNSS POD should fully consider the Earth’s oblateness and the atmospheric effect, especially for the perturbative acceleration higher than 10–10 m/s2. Graphical Abstract

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Basic project of Ministry of Science and Technology of Chinat

Shanghai Key Laboratory of Space Navigation and Position Techniques

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3