Abstract
AbstractAfter the 2011 Mw 9.0 Tohoku earthquake, seismicity became extremely active throughout Japan. Despite enormous efforts to detect the large number of earthquakes, microearthquakes (M < 2 inland, M < 3 offshore) were not always cataloged and many have remained undetected, making it difficult to understand the detailed seismicity after the 2011 Tohoku earthquake. We developed an automatic hypocenter determination method combined with machine learning to detect microearthquakes. Machine learning was used for phase classification with convolutional neural networks and ensemble learning to remove false detections. We detected > 920,000 earthquakes from March 2011 to February 2012, triple the number of the conventional earthquake catalog (~ 320,000). This represents a great improvement in earthquake detection, especially in and around the Tohoku region. Detailed analysis of our merged catalog more clearly revealed features such as (1) swarm migrations, (2) small foreshock activity, and (3) increased microseismicity preceding repeating earthquakes. This microseismic catalog provides a magnifying glass for understanding detailed seismicity.
Graphical Abstract
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献