Constellation design and performance of future quantum satellite gravity missions

Author:

Zingerle P.ORCID,Gruber T.,Pail R.,Daras I.

Abstract

AbstractTemporal aliasing is currently the largest error contributor to time-variable satellite gravity field models. Therefore, the evolution of sensor technologies has to be complemented by strategies to reduce temporal aliasing errors. The most straightforward way to improve temporal aliasing is through extended satellite constellations because they improve the observation geometry and increase the achievable temporal resolution. Therefore, strategies to optimize the design of larger satellite constellations are investigated in this contribution. A complete constellation modeling procedure is presented, starting from primary design variables (such as the required targeted resolutions) and concluding with concrete orbital elements for the individual satellites. In parallel, it is evaluated if improved instrument sensitivities based on quantum technologies (cold atom interferometry) can be fully exploited in the case of larger constellations. For this, future quantum satellite gravity missions adopting the gradiometry concept (similar to the GOCE mission) and the low-low satellite-to-satellite tracking concept (similar to GRACE/-FO) are simulated on optimized constellations with up to 6 satellites/pairs. The retrieval performance of a 6-pair mission in terms of the global equivalent water height RMS can be improved by a factor of roughly 3 compared to an inclined double-pair mission. 3D-gradiometry intrinsically has a better de-aliasing behavior but has extremely high accuracy requirements for the gradiometer (about 10 µEotvos) and the attitude reconstruction to be of any benefit. All simulations show that when incorporating improved sensor technologies, such as future quantum sensing instruments in extended constellations, temporal aliasing will remain the dominant error source by far, up to five orders of magnitude larger than the instrument errors. Therefore, improving sensor technologies has to go hand in hand with larger satellite constellations and improved space–time parameterization strategies to further reduce temporal aliasing effects. Graphical Abstract

Funder

European Space Agency

Technische Universität München

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Esa’s Efforts on Quantum Sensing for Space-Based Earth Observation;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3