A framework for estimating spherical vector fields using localized basis functions and its application to SuperDARN data processing

Author:

Nakano S.ORCID,Hori T.,Seki K.,Nishitani N.

Abstract

AbstractA technique for estimating a plasma drift velocity distribution in the ionosphere is presented. This technique is based on a framework for representing a global vector field on a sphere by using a set of localized basis functions which is newly derived as a variant of the spherical elementary current system (SECS). A vector field on a sphere can be divided into its divergence-free (DF) component and curl-free (CF) component. The DF and CF components can then be represented by weighted sums of the DF and CF vector-valued basis functions, respectively. While the SECS basis functions have a singular point, the new basis functions do not diverge over a sphere. This property of the new basis function allows us to achieve robust prediction of the drift velocity at any point in the ionosphere. Assuming that the ionospheric plasma drift velocity has no divergence, its distribution can be represented by a weighted sum of the DF basis functions. The proposed technique estimates the ionospheric plasma drift velocity distribution from the SuperDARN data by using the DF basis functions. Since there are some wide gaps in the spatial coverage of the SuperDARN, an empirical convection model is combined with the framework based on the new basis functions. It is demonstrated that the proposed technique is useful for the estimation and modeling of the ionospheric plasma velocity distribution.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3