Earth’s free oscillations excited by the 2011 Tohoku earthquake recorded in multiple GPS networks

Author:

Chu Cheng-Yin,Chao Benjamin F.ORCID,Ding Hao,Yuan Linguo

Abstract

AbstractWe search in the continuous GPS 3-D displacement data for the signals of the normal modes of Earth’s free oscillation that were excited by the 2011 Mw 9.0 Tohoku earthquake. A previous study has reported such a detection; we here conduct a more comprehensive and detailed study. We use GPS data from three separate networks: (i) about 1000 stations from the Japan GEONET; (ii) about 600 stations from the western USA PBO; and (iii) about 140 stations of the global IGS, and solve and form records of 21 h length at 30-s sampling rate. We conduct various multiple-record stacking methods: the frequency-domain power spectrum stacking that reduces the variance of the noises, and the time-domain stackings that boost the SNR of target modes while suppressing the non-target modes. We find the time-domain stacking method of optimal sequence estimation (OSE) to be the most effective, which show clearly high sensitivity and detectability of the modes in the spectrum. For the near-field GEONET where all excited modes have anti-nodes, all the spheroidal fundamental modes 0S90S43 below 5 MHz and some of the lower-degree overtones as well as most of the low-degree toroidal fundamental modes show up as prominent spectral peaks against the PREM model eigenfrequencies. The PBO sees less strong (being far-field and generally off-antinodes), but still clearly identifiable spectral peaks of the fundamental modes. The global IGS network data detect barely a handful of these modes because of its sparsity and small numbers of stations. We thus demonstrate that GPS does actually record the tiny seismic signals that can be revealed by means of multiple-record stacking methods, potentially useful for studying earthquake source mechanisms exciting the normal modes.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3