Performance of the double-thin-shell approach for studying nighttime medium-scale traveling ionospheric disturbances using two dense GNSS observation networks in Japan

Author:

Fu WeizhengORCID,Otsuka Yuichi,Shinbori Atsuki,Nishioka Michi,Perwitasari Septi

Abstract

AbstractElectrodynamic coupling between the ionospheric E and F regions is widely recognized as the underlying mechanism for generating medium-scale traveling ionospheric disturbances (MSTIDs) during nighttime at midlatitudes. Recently, the double-thin-shell approach has proven to be a useful tool for studying the E–F coupling. By using total electron content (TEC) measurements, this approach enables the simultaneous reconstruction of electron density perturbations in both the E and F regions with broad and continuous coverage. However, the current reconstruction performance is limited when using only GPS-TEC measurements from GEONET, a dense network of ground-based Global Navigation Satellite System (GNSS) receivers over Japan. The expansion of available data sources and the integration of multi-GNSS observation data are considered important to enhance the double-thin-shell model. Fortunately, SoftBank Corp., a Japanese telecommunications provider, has recently developed a dense independent GNSS observation network to improve positioning services. In this paper, we analyze the potential of the improved double-thin-shell approach and emphasize the importance of incorporating multi-GNSS observation data from both GEONET and SoftBank networks. The solvability analysis, simulation, and observation results collectively indicate a substantial improvement in the spatiotemporal resolution. Specifically, the longitudinal and latitudinal resolution is improved from 0.15° to 0.1° in the E region, and from 0.5° to 0.3° in the F region. The temporal resolution is also improved from 2 to 1 min. In addition, significant improvements have been achieved in the reconstruction performance, particularly for the E region under complex background conditions. Based on these assessments, we conclude that the incorporation of GEONET and SoftBank GNSS observation data holds significant potential for improving the double-thin-shell model and advancing our understanding of MSTIDs. Graphical abstract

Funder

JSPS KAKENHI

JSPS Bilateral Joint Research Projects

JSPS Core-to-Core Program, B. Asia-Africa Science Platforms

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3