Author:
Ding Chunyu,Xiao Zhiyong,Su Yan
Abstract
AbstractIn the radargram obtained by the high-frequency lunar penetrating radar onboard the Chang’E-3 mission, we notice a potential subsurface cavity that has a smaller permittivity compared to the surrounding materials. The two-way travel time between the top and bottom boundaries of the potential cavity is ~ 21 ns, and the entire zone is located within the continuous ejecta deposits of the Ziwei crater, which generally have similar physical properties to typical lunar regolith. We carried out numerical simulations for electromagnetic wave propagation to investigate the nature of this low-permittivity zone. Assuming different shapes for this zone, a comprehensive comparison between our model results and the observed radargram suggests that the roof of this zone is convex and slightly inclined to the south. Modeling subsurface materials with different relative permittivities suggests that the low-permittivity zone is most likely formed due to a subsurface cavity. The maximum vertical dimension of this potential cavity is ~ 3.1 m. While the continuous ejecta deposits of Ziwei crater are largely composed of pre-impact regolith, competent mare basalts were also excavated, which is evident by the abundant meter-scale boulders on the wall and rim of Ziwei crater. We infer that the subsurface cavity is supported by excavated large boulders, which were stacked during the energetic emplacement of the continuous ejecta deposits. However, the exact geometry of this cavity (e.g., the width) cannot be constrained using the single two-dimensional radar profile. This discovery indicates that large voids formed during the emplacement of impact ejecta should be abundant on the Moon, which contributes to the high bulk porosity of the lunar shallow crust, as discovered by the GRAIL mission. Our results further suggest that ground penetrating radar is capable of detecting and deciphering subsurface cavities such as lava tubes, which can be applied in future lunar and deep space explorations.
Funder
National Natural Science Foundation of China
Project on Civil Aerospace Technologies
Opening Fund of the Key Laboratory of Lunar and Deep Space Exploration, CAS
B-type Strategic Priority Program of the Chinese Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献