Source rupture process of the 2018 Hokkaido Eastern Iburi earthquake deduced from strong-motion data considering seismic wave propagation in three-dimensional velocity structure

Author:

Asano KimiyukiORCID,Iwata Tomotaka

Abstract

Abstract The source rupture process of the 2018 Hokkaido Eastern Iburi earthquake (MJMA 6.7) was analyzed by a kinematic waveform inversion method using strong-motion data in 0.04–0.5 Hz. This earthquake occurred close to the Hidaka Collision Zone and the Ishikari depression, where the crustal structure is rather complex. Thus, we used a three-dimensional velocity structure model to compute the theoretical Green’s functions by the finite difference method. A source fault model with strike-angle variation was set based on the spatial distribution of the early aftershocks. The strong-motion stations used for the source inversion were selected based on the result of forward ground motion simulation of a moderate aftershock. The slip in the first 5 s was relatively small, but an area of significant slip with peak slip of 1.7 m was found in the depth range from 22 to 32 km. The rupture propagated upward mainly in the southwest direction. Based on the regional crustal structure and the configuration of the Moho discontinuity, the large-slip area was thought to be located in the lower crust, and its rupture did not reach the upper part of the continental crust. Most of the early aftershocks occurred around the large-slip area. The later aftershocks at the depth shallower than 20 km occurred outside the causative source fault of the mainshock. Three-dimensional ground motion simulation demonstrated that the heterogeneous source process and the three-dimensional basin and crustal velocity structure brought a large velocity pulse to an area to the southwest of the source fault, where the largest PGV was observed during the mainshock. The spatial distribution of the simulated PGV resembled the observed PGV distribution except some sites located inside the Ishikari depression where thick Quaternary soft low-velocity sediments exist at the top of the basin.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Disaster Prevention Research Institute, Kyoto University

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3