Nonlinear triggering process of whistler-mode emissions in a homogeneous magnetic field

Author:

Fujiwara YuyaORCID,Nogi Takeshi,Omura Yoshiharu

Abstract

AbstractWe perform an electromagnetic particle simulation of triggered emissions in a uniform magnetic field for understanding of nonlinear wave–particle interaction in the vicinity of the magnetic equator. A finite length of a whistler-mode triggering wave packet with a constant frequency is injected by oscillating an external current at the equator. We find that the first subpacket of triggered emissions is generated in the homogeneous magnetic field. By analyzing resonant currents and resonant electron dynamics in the simulation, we find that the formation of an electron hole in a velocity phase space results in resonant currents, and the currents cause wave amplification and frequency increase. We obtain the interaction time of counter-streaming resonant electrons in a triggering wave packet with a finite width. By changing the duration time of the triggering pulse, we evaluate the interaction time necessary for formation of an electron hole. We conduct 4 runs with different duration times of the triggering pulse, 980, 230, 105, 40 $$\Omega _e^{-1}$$ Ω e - 1 , which correspond to cases with interaction times, 370%, 86%, 39%, and 15% of the nonlinear trapping period, respectively. We find generation of triggered emissions in the three cases of 370%, 86%, and 39%, which agrees with the conventional nonlinear model that the nonlinear transition time, which is necessary for formation of resonant currents, is about a quarter of the nonlinear trapping period. Graphic Abstract

Funder

japan society for the promotion of science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3