Findings on celestial pole offsets predictions in the second earth orientation parameters prediction comparison campaign (2nd EOP PCC)

Author:

Wińska MałgorzataORCID,Kur Tomasz,Śliwińska-Bronowicz Justyna,Nastula Jolanta,Dobslaw Henryk,Partyka Aleksander,Belda Santiago,Bizouard Christian,Boggs Dale,Chin Mike,Dhar Sujata,Ferrandiz Jose M.,Gou Junyang,Gross Richard,Guessoum Sonia,Heinkelmann Robert,Modiri Sadegh,Ratcliff Todd,Raut Shrishail,Schartner Matthias,Schuh Harald,Kiani Shahvandi Mostafa,Soja Benedikt,Thaller Daniela,Wu Yuanwei,Xu Xueqing,Yang Xinyu,Zhao Xin

Abstract

AbstractIn 2021, the International Earth Rotation and Reference Systems Service (IERS) established a working group tasked with conducting the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC) to assess the current accuracy of EOP forecasts. From September 2021 to December 2022, EOP predictions submitted by participants from various institutes worldwide were systematically collected and evaluated. This article summarizes the campaign's outcomes, concentrating on the forecasts of the dX, dY, and dψ, dε components of celestial pole offsets (CPO). After detailing the campaign participants and the methodologies employed, we conduct an in-depth analysis of the collected forecasts. We examine the discrepancies between observed and predicted CPO values and analyze their statistical characteristics such as mean, standard deviation, and range. To evaluate CPO forecasts, we computed the mean absolute error (MAE) using the IERS EOP 14 C04 solution as the reference dataset. We then compared the results obtained with forecasts provided by the IERS. The main goal of this study was to show the influence of different methods used on predictions accuracy. Depending on the evaluated prediction approach, the MAE values computed for day 10 of forecast were between 0.03 and 0.16 mas for dX, between 0.03 and 0.12 mas for dY, between 0.07 and 0.91 mas for dψ, and between 0.04 and 0.41 mas for dε. For day 30 of prediction, the corresponding MAE values ranged between 0.03 and 0.12 for dX, and between 0.03 and 0.14 mas for dY. This research shows that machine learning algorithms are the most promising approach in CPO forecasting and provide the highest prediction accuracy (0.06 mas for dX and 0.08 mas for dY for day 10 of prediction). Graphical abstract

Funder

Narodowym Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3