A look at the blind Kumamoto experiment: combining active and passive seismic observations to avoid Rayleigh-wave mode misidentification

Author:

Diego Mercerat E.ORCID,Dylan Mikesell T.

Abstract

AbstractWe present our pathway through participation in the blind Kumamoto exercise, particularly the Step 1 of site characterization. The combination of passive and active seismic imaging techniques is used to image the velocity profile beneath the KUMA site. The estimation of the broadband Rayleigh wave dispersion curve is based on cross-correlations of ambient seismic noise and analysis of active seismic shots. We calculate correlations from the entire time series (only vertical components) of each seismic array after classical pre-processing of ambient noise data. Then, a passive seismic section is constructed using all available stations pairs and stacking the cross-correlation traces with similar interstation distances. The obtained passive seismic section is analyzed using a high-resolution Radon transform to obtain the dispersion image of Rayleigh waves traveling through the KUM-LL, KUM-M and KUM-SM arrays. Then, the information is merged and interpolated to obtain the final broadband dispersion curve. In addition, active source seismic data are used with the high-resolution Radon technique to constrain the model at shallow depths (< 30 m). Then, a broadband dispersion image is constructed with significant energy from 0.9 Hz to 45 Hz. The final dispersion curve is inverted using the non-linear neighborhood algorithm. Using just the fundamental mode Rayleigh wave, a first model with normal velocity variation in depth is obtained that corresponds well with the preferred model provided by the organizing committee. The addition of a mHVSR curve in a joint inversion better constrains the deeper part of the model (> 1 km). After comparison of the submitted dispersion curve to the theoretical dispersion curve for the preferred model (Step 4 of the blind test), the authors note that there was a clear misinterpretation in the fundamental mode of their submitted results, especially at frequencies higher than 5 Hz. Using both fundamental (only visible in the passive data set) and first overtones of Rayleigh waves (only visible in the active seismic data set) a refined velocity model could have been inferred, but we decided to keep our first submitted result. This detailed interpretation should be further studied as dispersion images from forward and backward hammer shots are quite different, which may indicate strong variations in the geometry and/or shear-wave velocities of the first meters of the subsurface.Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3