High-resolution shallow crustal shear wave velocity structure of Anyuan mining area and its adjacent region in Jiangxi Province, China

Author:

Gong Meng,Lv JianORCID,Zhang Xingmian,Zheng Yong,Chen Hao,Dong Jun,Zha Xiaohui,Li Zheng,Sheng Shuzhong,Wang Tongli

Abstract

AbstractHigh-resolution seismic image is critically important for mining minerals. In this study, we collected seismic data from a local dense seismic array consisting of 154 stations around the Anyuan mining area and its adjacent region of Pingxiang City, Jiangxi Province in South China, and applied the ambient noise tomography (ANT) method to image the shear wave velocity structure in the study area. Shallow crustal velocities at depths less than 3.3 km were determined by direct inversion of Rayleigh wave group velocity dispersion curves at the period range of 0.5–5.0 s. Overall, the S-wave velocity structure has a tight correlation with surface geological and tectonic features in the study area. The shear wave velocity structure in the shallow crust of the Anyuan Mine and its adjacent areas displayed distinct low-velocity anomalies, which can be attributed to the depression of sedimentary structures and coal mining activities in the Pingxiang-Leping region. The zones surrounding the Anyuan fault (AYF) and Wangkeng fault (WKF) zones exhibited low-velocity anomalies from the ground surface to ~ 3.3 km underground. And the low-velocity anomalies at depths less than 1.2 km could be related to the sedimentary environment of coal mine and the coal mining activities, while the low-velocity anomalies at depths below 1.2 km are caused by the presence of fracture medium, oil and gas in the fault zone. The shear wave velocity changes sharply across the AYF, and the characteristics of the velocity change interface indicate that the AYF is inclined toward the northwest, with its extension reaching depths of approximately 3 km underground. Graphical Abstract

Funder

State Key Laboratory of Nuclear Resources and Environment, East China University of Technology

the Spark Program of Earthquake Technology of CEA, China

State Key Laboratory of Geological Processes, Mineral Resources, China University of Geosciences

Jiangxi Provincial Natural Science Foundation

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3