Contribution to crustal strain accumulation of minor faults: a case study across the Niigata–Kobe Tectonic Zone, Japan

Author:

Tamura TomonoriORCID,Oohashi KiyokazuORCID,Otsubo MakotoORCID,Miyakawa AyumuORCID,Niwa MasakazuORCID

Abstract

AbstractRecent global navigation satellite system (GNSS) data for the Japanese Islands have revealed a high-strain-rate region suggesting the existence of a region of broad-scale crustal deformation. The Niigata–Kobe Tectonic Zone (NKTZ), which is the high-strain-rate zone in central Japan, shows a short-term dextral strain rate of ~ 12 mm/year. The total slip rate of the Quaternary fault zones in the NKTZ has been estimated as ~ 6.7 mm/year, accounting for just over half the short-term strain rate of the zone. However, this slip rate underestimates the total slip rate on faults within the NKTZ owing to possible distributed deformation on minor faults. This study quantifies the slip rate attributable to these other faults in the southeastern-central NKTZ and reveals the unique deformation structure across the high-strain-rate zone, which comprises a Quaternary fault core, a Quaternary fault damage zone, an incipient brittle shear zone (active background), and an inactive background. The spatial characteristics of the incipient brittle shear zone can be explained in terms of fault density, which increases toward the central NKTZ. Minor faults located > 500 m from major Quaternary faults but within the NKTZ have sense of shear consistent with that of the major faults. In contrast, minor faults outside of the NKTZ show sense of shear that differ from the dextral displacement of the high-strain-rate zone and do not contribute to the slip rate of the zone. The total slip rate of minor faults in the southeastern-central NKTZ is estimated to be 0.46–2.88 mm/year (roughly equal to a major Quaternary fault in the zone), which implies 4–24% of crustal strain is stored in the active background.

Funder

Fukada Geological Institute

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3