Volcanological challenges to understanding explosive large-scale eruptions

Author:

Geshi NobuoORCID

Abstract

AbstractAn explosive eruption, associated with the formation of a large ignimbrite sheet and collapsed caldera, is the most severe volcanic disaster on Earth. As modern society has little experience with natural disasters triggered by such events, the integration of volcanological knowledge from geological, petrological, geochemical, and geophysical disciplines is necessary for risk assessment and hazard management planning of large-scale explosive eruptions. Here, I review current volcanological attempts at revealing the mechanisms underlying large-scale explosive eruptions to highlight future objectives. The detection of massive magma storage regions with the potential to generate large-scale explosive eruptions should be the first objective of risk evaluation and assessment for caldera-forming eruption scenarios. This detection requires the development of geophysical techniques used for structural exploration. Geochemical and petrological explorations of leaked gas and magma during precursory eruptions can be useful for investigating the state of a body of underground magma. Evaluation of the eruptibility of a magma chamber is also important for risk assessment, as is the estimation of the timescales of magma accumulation. Defining the triggers that destabilize large volume magma chambers that serve as zones of long-term storage is crucial for being able to provide short-term alerts. Petrological investigations of the magmatic products from past large-scale explosive eruptions are a key tool for such a goal. Modeling the distribution of erupted material, such as huge ignimbrite sheets and co-ignimbrite ash fall, is also crucial for risk assessment of large-scale explosive eruptions. Advancing the understanding of the mechanisms and effects of large-scale explosive eruptions requires development in various fields of volcanology along with the integration of knowledge from multiple disciplines, thus promoting progress and interaction across various areas of volcanology and science and technology.

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3