Structured regularization based velocity structure estimation in local earthquake tomography for the adaptation to velocity discontinuities

Author:

Yamanaka Yohta,Kurata SumitoORCID,Yano Keisuke,Komaki Fumiyasu,Shiina Takahiro,Kato Aitaro

Abstract

AbstractWe propose a local earthquake tomography method that applies a structured regularization technique to determine sharp changes in Earth’s seismic velocity structure using arrival time data of direct waves. Our approach focuses on the ability to better image two common features that are observed in Earth’s seismic velocity structure: sharp changes in velocities that correspond to material boundaries, such as the Conrad and Moho discontinuities; and gradual changes in velocity that are associated with pressure and temperature distributions in the crust and mantle. We employ different penalty terms in the vertical and horizontal directions to refine the earthquake tomography. We utilize a vertical-direction (depth) penalty that takes the form of the $${l}_{1}$$ l 1 -sum of the $${l}_{2}$$ l 2 -norms of the second-order differences of the horizontal units in the vertical direction. This penalty is intended to represent sharp velocity changes caused by discontinuities by creating a piecewise linear depth profile of seismic velocity. We set a horizontal-direction penalty term on the basis of the $${l}_{2}$$ l 2 -norm to express gradual velocity tendencies in the horizontal direction, which has been often used in conventional tomography methods. We use a synthetic data set to demonstrate that our method provides significant improvements over velocity structures estimated using conventional methods by obtaining stable estimates of both steep and gradual changes in velocity. We also demonstrate that our proposed method is robust to variations in the amplitude of the velocity jump, the initial velocity model, and the number of observed arrival times, compared with conventional approaches, and verify the adaptability of the proposed method to dipping discontinuities. Furthermore, we apply our proposed method to real seismic data in central Japan and present the potential of our method for detecting velocity discontinuities using the observed arrival times from a small number of local earthquakes. Graphical Abstract

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3