Comparison of different machine learning approaches for tropospheric profiling based on COSMIC-2 data

Author:

Lasota ElżbietaORCID

Abstract

Abstract Precise and reliable information on the tropospheric temperature and water vapor profiles play a key role in weather and climate studies. Among the sensors supporting the observations of the troposphere, one can distinguish the Global Navigation Satellite System Radio Occultation (RO) technique, which provides accurate and high-quality meteorological profiles. However, external knowledge about temperature is essential to estimate other physical atmospheric parameters. To overcome this constraint, I trained and evaluated four different machine learning models comprising Artificial Neural Network (ANN) and Random Forest regression algorithms, where no auxiliary meteorological data is needed. To develop the models, I employed 150,000 globally distributed (45°S–45°N) RO profiles between October 2019 and December 2020. Input vectors consisted of bending angle or refractivity profiles from the Formosa Satellite-7/Constellation Observing System for Meteorology, Ionosphere, and Climate-2 mission together with the month, hour, and latitude of the RO event. While temperature, pressure, and water vapor profiles derived from the modern ERA5 reanalysis and interpolated to the RO location served as the models’ targets. Evaluation on the testing data set revealed a good agreement between all model outputs and ERA5 targets, where slightly better statistics were noted for ANN and refractivity inputs. Vertically averaged root mean square error (RMSE) did not exceed 1.7 K for the temperature and reached around 1.4 hPa and 0.45 hPa for the total and water vapor pressures. Additional validation with 477 co-located radiosonde observations and the operational one-dimensional variational product showed slightly larger discrepancies with the mean RMSE of around 1.9 K, 1.9 hPa, and 0.5 hPa for the temperature, pressure, and water vapor, respectively. Graphical Abstract

Funder

Wrocław University of Environmental and Life Sciences

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Reference42 articles.

1. Ali J, Khan R, Ahmad N, Maqsood I (2012) Random forests and decision trees. Int J Comput Sci Issues 9(5):272

2. Anthes RA (2011) Exploring Earth’s atmosphere with radio occultation: contributions to weather, climate and space weather. Atmos Meas Tech 4:1077–1103. https://doi.org/10.5194/amt-4-1077-2011

3. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305

4. Bergstra JS, Bardenet R, Bengio Y, Kégl B (2011) Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems. pp 2546–2554

5. Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett. https://doi.org/10.1029/2003GL018984

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3