Determination of the Earth’s structure based on intermediate-period surface wave recordings of tidal gravimeters: a case study

Author:

Karkowska KamilaORCID,Wilde-Piórko Monika

Abstract

AbstractTidal gravimeters can detect intermediate-period surface waves with high accuracy. Three gravimetric stations with estimated transfer functions and co-located with seismic stations were selected: two in Belgium (Membach and Rochefort, in Western Europe) and one in Germany (Black Forest, in Central Europe). The compatibility of gravimetric and seismic recordings of earthquakes in the period range of 10-180 s has been presented. The series of monochromatic signals separated from surface waves for selected events have been calculated using the multiple-filtering procedure, and averaged fundamental-mode Rayleigh wave group-velocity curves have been estimated on a regional scale. Next, averaged dispersion curves for three regions (Italy, Greece, and Western Turkey) were inverted by weighted linear inversion methods. Additionally, a quantitative analysis of resolution tests of inverted models was presented to show the capabilities of the gravimetric data to retrieve a shear-wave velocity distribution with a depth. In particular, a method for determining the depth range of the inverted model has been proposed. Results obtained based on gravimetric data were verified by results from seismic data obtained by applying the same procedure. This study shows the novel application of tidal gravimetric data in the determination of the regional Earth’s structure based on intermediate-period surface waves recordings, as well as a comprehensive approach to the quantitative estimation of a final model resolution. Graphical Abstract

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3