Pattern in ejecta curtain generated by the impact into granular targets of various sized particles and application to the ejecta curtain observed in the Hayabusa2 impact experiment

Author:

Kadono ToshihikoORCID,Suzuki Ayako I.,Suetsugu Ryo,Shimaki Yuri,Hasegawa Sunao

Abstract

AbstractWe conducted impact experiments using targets composed of particles with size distributions and projectiles with a size larger than or comparable with the maximum size of particles in targets. The pattern and particle concentration in the ejecta curtain were investigated. The results show three types of ejecta curtain features: (i) filament pattern extending throughout the entire curtain and high concentration, (ii) filament pattern and low concentration, and (iii) mesh-like pattern with a structure on smaller scales than the entire curtain and low concentration. When the target consists of particles using a bimodal size distribution with size differences of more than one order of magnitude, the filament pattern appears, exhibiting case (i). If the target consists of particles with various sizes with size differences of more than one order of magnitude, the filament pattern appears, but the concentration decreases, appearing the features of case (ii). Case (iii) occurs when the target consists of particles with a single size or when the mass of particles with a certain size is dominant. Thus, the size distribution of the particles in the targets determines the pattern and particle concentration in the ejecta curtain. Based on these results, we confirm that the pattern in the ejecta curtain caused by the impact of the Small Carry-on Impactor (SCI) in the Hayabusa2 mission showing case (i) is consistent with the evaluated sizes and masses of grains and boulders in the ejecta curtain.Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3