Abstract
AbstractIn the tenuous atmospheric bodies of our solar system, space weathering on the celestial surface is an important process for its chemical and physical evolution and ambient environment on timescales of celestial evolution. Space plasma is a dominant energy and material source for space weathering. Plasma irradiation experiment in the laboratory is an effective method for modeling space weathering driven by space plasma. However, comprehensive modeling of plasma space weathering has not yet been conducted because the capabilities of the earlier facilities were not optimized for realistic space weathering; for example, the incident electron and ion were not irradiated in the same condition. Here, we developed a plasma irradiation system, Plasma Irradiation Emulator for Celestial Environments (PIECE) of the solar system bodies, which reproduces plasma space weathering in tenuous atmospheric bodies by the electron and ion irradiations in the same condition. We successfully developed a system with high electron and ion number fluxes of $$\sim 10^{13} - 10^{16} {\text{ particles cm}}^{{ - {2}}} {\text{s}}^{{ - {1}}}$$
∼
10
13
-
10
16
particles cm
-
2
s
-
1
at any acceleration energy in the range of 1–30 keV, which leads to a fluence of e.g., $$\sim 10^{18} - 10^{21} {\text{ particles cm}}^{{ - {2}}} {\text{s}}^{{ - {1}}}$$
∼
10
18
-
10
21
particles cm
-
2
s
-
1
, with a 1-day irradiation time. This fluence corresponds to a plasma irradiation time of ~ 103–106 years on Europa.
Graphical Abstract
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Reference39 articles.
1. Bennett CJ, Pirim C, Orlando TM (2013) Space-weathering of solar system bodies: a laboratory perspective. Chem Rev 113:9086–9150. https://doi.org/10.1021/cr400153k
2. Carlson RW, Calvin WM, Dalton JB, Hansen GB, Hudson RL, Johnson RE, McCord TB, Moore MH (2009) Europa’s Surface Composition. University of Arizona Press, Tucson
3. Cooper JF, Johnson RE, Mauk BH, Garrett HB, Gehrels N (2001) Energetic Ion and electron irradiation of the Icy Galilean Satellites. Icarus 149:133–159. https://doi.org/10.1006/icar.2000.6498
4. Hand KP, Carlson RW (2015) Europa’s surface color suggests an ocean rich with sodium chloride. Geophys Res Lett 42:3174–3178. https://doi.org/10.1002/2015gl063559
5. Helfenstein P, Shepard MK (1999) Submillimeter-scale topography of the lunar regolith. Icarus 141:107–131. https://doi.org/10.1006/icar.1999.6160