A plasma irradiation system optimized for space weathering of solar system bodies

Author:

Kimura TomokiORCID,Otsuki Misako,Kitano Tomohiro,Hoshino Ryo,Nakauchi Yusuke,Haganuma Shunsuke,Haganuma Ryu,Haganuma Tetsuo,Tsuchiya Fuminori,Tamagawa Toru,Hayato Asami,Kimura Jun,Terada Naoki,Usui Hideyuki,Nishino Masaki N.ORCID,Yokota Shoichiro,Miyake Yohei

Abstract

AbstractIn the tenuous atmospheric bodies of our solar system, space weathering on the celestial surface is an important process for its chemical and physical evolution and ambient environment on timescales of celestial evolution. Space plasma is a dominant energy and material source for space weathering. Plasma irradiation experiment in the laboratory is an effective method for modeling space weathering driven by space plasma. However, comprehensive modeling of plasma space weathering has not yet been conducted because the capabilities of the earlier facilities were not optimized for realistic space weathering; for example, the incident electron and ion were not irradiated in the same condition. Here, we developed a plasma irradiation system, Plasma Irradiation Emulator for Celestial Environments (PIECE) of the solar system bodies, which reproduces plasma space weathering in tenuous atmospheric bodies by the electron and ion irradiations in the same condition. We successfully developed a system with high electron and ion number fluxes of $$\sim 10^{13} - 10^{16} {\text{ particles cm}}^{{ - {2}}} {\text{s}}^{{ - {1}}}$$ 10 13 - 10 16 particles cm - 2 s - 1 at any acceleration energy in the range of 1–30 keV, which leads to a fluence of e.g., $$\sim 10^{18} - 10^{21} {\text{ particles cm}}^{{ - {2}}} {\text{s}}^{{ - {1}}}$$ 10 18 - 10 21 particles cm - 2 s - 1 , with a 1-day irradiation time. This fluence corresponds to a plasma irradiation time of ~ 103–106 years on Europa. Graphical Abstract

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3