Author:
Xiang Yunfei,Yue Jianping,Jiang Zhongshan,Xing Yin
Abstract
AbstractIn order to characterize the spatial–temporal properties of postseismic slip motions associated with the 2015 Illapel earthquake, the daily position time series of 13 GNSS sites situated at the near-field region are utilized. Firstly, a scheme of postseismic signal extraction and modeling is introduced, which can effectively extract the postseismic signal with consideration of background tectonic movement. Based on the extracted postseismic signal, the spatial–temporal distribution of afterslip is inverted under the layered medium model. Compared with coseismic slip distribution, the afterslip is extended to both deep and two sides, and two peak slip patches are formed on the north and south sides. The afterslip is mainly cumulated at the depth of 10–50 km, and the maximum slip reaches 1.46 m, which is situated at latitude of − 30.50°, longitude of − 71.78°, and depth of 18.94 m. Moreover, the postseismic slip during the time period of 0–30 days after this earthquake is the largest, and the maximum of fault slip and corresponding slip rate reaches 0.62 m and 20.6 mm/day. Whereas, the maximum of fault slip rate during the time period of 180–365 days is only around 1 mm/day. The spatial–temporal evolution of postseismic slip motions suggests that large postseismic slip mainly occurs in the early stage after this earthquake, and the fault tend to be stable as time goes on. Meanwhile, the Coulomb stress change demonstrate that the postseismic slip motions after the Illapel earthquake may be triggered by the stress increase in the deep region induced by coseismic rupture.
Funder
National Key R&D Program of China
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Geology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献