Spatial–temporal properties of afterslip associated with the 2015 Mw 8.3 Illapel earthquake, Chile

Author:

Xiang Yunfei,Yue Jianping,Jiang Zhongshan,Xing Yin

Abstract

AbstractIn order to characterize the spatial–temporal properties of postseismic slip motions associated with the 2015 Illapel earthquake, the daily position time series of 13 GNSS sites situated at the near-field region are utilized. Firstly, a scheme of postseismic signal extraction and modeling is introduced, which can effectively extract the postseismic signal with consideration of background tectonic movement. Based on the extracted postseismic signal, the spatial–temporal distribution of afterslip is inverted under the layered medium model. Compared with coseismic slip distribution, the afterslip is extended to both deep and two sides, and two peak slip patches are formed on the north and south sides. The afterslip is mainly cumulated at the depth of 10–50 km, and the maximum slip reaches 1.46 m, which is situated at latitude of − 30.50°, longitude of − 71.78°, and depth of 18.94 m. Moreover, the postseismic slip during the time period of 0–30 days after this earthquake is the largest, and the maximum of fault slip and corresponding slip rate reaches 0.62 m and 20.6 mm/day. Whereas, the maximum of fault slip rate during the time period of 180–365 days is only around 1 mm/day. The spatial–temporal evolution of postseismic slip motions suggests that large postseismic slip mainly occurs in the early stage after this earthquake, and the fault tend to be stable as time goes on. Meanwhile, the Coulomb stress change demonstrate that the postseismic slip motions after the Illapel earthquake may be triggered by the stress increase in the deep region induced by coseismic rupture.

Funder

National Key R&D Program of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3