Latitudinal- and height-dependent long-term climatology of propagating quasi-16-day waves in the troposphere and stratosphere

Author:

Tang Wentao,Zhang Shaodong,Huang Chunming,Huang Kaiming,Gong Yun,Gan Quan

Abstract

AbstractThe global amplitude of the westward propagating quasi-16-day waves (16DW) with wavenumber 1 (Q16W1), the strongest component of 16DW, are derived from the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis temperature and zonal wind data sets from February 1979 to January 2018. In terms of temperature and zonal wind, strong climatologically average amplitudes of Q16W1 appear in the upper stratosphere at mid–high latitudes in both hemispheres, and the wave amplitude is stronger in the Northern Hemisphere (NH) than in the Southern Hemisphere (SH). Multivariate linear regression is separately applied to calculate the responses of the Q16W1 temperature and zonal wind amplitudes to the QBO (quasi-biennial oscillation), ENSO (El Niño-Southern Oscillation), solar activity and linear trends of the Q16W1 amplitude. The QBO signatures of the Q16W1 temperature and zonal wind amplitudes are mainly located in the stratosphere. The Q16W1 has significant QBO responses at low latitudes. In addition, only the temperature amplitude presents a larger QBO signature in its strongest climatological amplitude region. No significant responses to ENSO and solar activity are observed in temperature and zonal wind amplitudes. The linear trends of the monthly mean Q16W1 temperature and zonal wind amplitude are generally positive, especially in the mid-upper stratosphere. The trend is asymmetric about the equator and significantly stronger in the NH than in the SH. The seasonal variation in the trend of the temperature amplitude is studied and illustrated to be stronger in winter and weaker in spring and autumn. Further investigation suggests that the background and local instability trends contribute most of the increasing trend of the Q16W1 amplitude. In winter in both hemispheres, a weakening trend of eastward zonal wind provides more favourable background wind for Q16W1 upward propagation, in autumn and winter in the NH and in spring, autumn and winter in the SH, and the increasing trend of local instability may enhance wave excitation. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3