Outer trench slope extension to frontal wedge compression in a subducting plate

Author:

Chang Emmy T.ORCID,Mozziconacci Laetitia

Abstract

AbstractThe occurrence of faulting in subducting plates is a major process that changes the mechanical properties of the subducting lithosphere and carries surface materials into mantle wedges. Two ocean-bottom seismometer networks deployed on the frontal accretionary wedge of the northern Manila trench in 2005 and on the outer slope of the trench in 2006 were used to detect earthquakes in the subducting plate. All available P and S manually picked phases and the waveforms of 16 short-period, three-component stations were used. Relocation was performed using the double-difference method with differential times derived from the phase-picked data. Two intraplate earthquake sequences of small-to-moderate magnitudes in the northern Manila subduction system were investigated in this study. The results revealed distinct fault planes, but a contrasting seismogeny over the northern Manila Trench. The seismicity in the frontal wedge (as measured in 2005) was mainly contributed by a fluid overpressure sequence, whereas that in the incoming plate (as measured in 2006) was contributed by the aftershocks of an extensional faulting sequence. The obtained seismic velocity models and Vp/Vs ratios revealed that the overpressure was likely caused by high pore-fluid pressure within the shallow subduction zone. By using the near-field waveform inversion algorithm, we determined focal mechanism solutions for a few relatively large earthquakes. Through the use of data obtained from global seismic observations, we determined that stress transfer may be responsible for the seismic activity in the study area during the period of 2005–2006. In late 2005, the plate interface in the frontal wedge area was unlocked by the overpressure effect due to a thrusting-dominant sequence. This event changed the stress regime across the Manila Trench and triggered a normal fault extension at the outer trench slope in mid-2006. However, in the present study, a hybrid focal mechanism solution indicating reverse and strike–slip mechanisms was implemented, and it revealed that the plate interface locked again in late 2006. Graphical Abstract

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3