Numerical experiments on tsunami flow depth prediction for clustered areas using regression and machine learning models

Author:

Kamiya Masato,Igarashi Yasuhiko,Okada Masato,Baba Toshitaka

Abstract

AbstractEmergency responses during a massive tsunami disaster require information on the flow depth of land for rescue operations. This study aims to predict tsunami flow depth distribution in real time using regression and machine learning. Training data of 3480 earthquake-induced tsunamis in the Nankai Trough were constructed by numerical simulations. Initially, the k-means method was used to discriminate the areas with approximately the same flow depth. The number of clustered areas was 18, and the standard deviation of the flow depth data in a cluster was 0.46 m on average. The objective variables were the mean and standard deviation of the flow depth in the clustered areas. The explanatory variables were the maximum deviation of the water pressure at the seafloor observation points of the DONET observatory. We generated multiple regression equations for a power law using these datasets and the conjugate gradient method. Further, we employed the multilayer perceptron method, a machine learning technique, to evaluate the prediction performance. Both methods accurately predicted the tsunami flow depth calculated by testing 11 earthquake scenarios in the cabinet office of the government of Japan. The RMSE between the predicted and the true (via forward tsunami calculations) values of the mean flow depth ranged from 0.34–1.08 m. In addition to large-scale tsunami prediction systems, prediction methods with a robust and light computational load as used in this study are essential to prepare for unforeseen situations during large-scale earthquakes and tsunami disasters. Graphical Abstract

Funder

JSPS

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3