A newly revised estimation of bulk densities and examination of the shape of individual Ryugu grains

Author:

Miyazaki AkikoORCID,Yada Toru,Yogata Kasumi,Hatakeda Kentaro,Nakato Aiko,Nishimura Masahiro,Nagashima Kana,Kumagai Kazuya,Hitomi Yuya,Soejima Hiromichi,Tahara Rui,Kanemaru Rei,Nakano Arisa,Yoshitake Miwa,Iwamae Ayako,Furuya Shizuho,Tsuchiyama Akira,Tachibana Shogo,Michikami Tatsuhiro,Okada Tatsuaki,Abe Masanao,Usui Tomohiro

Abstract

AbstractThe bulk density of grains from a celestial body is a fundamental property related to its composition and structure, contributing to the understanding of its evolutionary history. In this study, we provide the bulk density of 637 grains returned from the C-type near-Earth asteroid 162173 Ryugu. This is the largest number of grains to date for the curation activity, corresponding to 38 wt.% of the total returned samples (approximately 5.4 g). Although several densities of the Ryugu grains were reported, the volume estimation of some samples showed uncertainties. Therefore, we applied a new volume estimation model calibrated by X-ray micro-computed tomography (XCT) to the Ryugu grains to more accurately estimate their bulk density. The obtained average bulk density of 637 Ryugu grains was 1.79 ± 0.31 g/cm3 (1σ variation) for weights of 0.5‒100 mg (sub-mm ‒to 10 mm) irrespective of their 3D shapes characterized by three axial length ratios, considered to be a representative of the returned samples. The bulk density distributions of the grains in Chambers A and C were statistically distinguishable, with mean values of 1.81 ± 0.30 and 1.76 ± 0.33 g/cm3 (1σ variations), respectively. Despite the small difference, bulk density may have differed by sampling site. The obtained average bulk density value of A + C samples was almost the same as that of 16 Ryugu grains estimated based on CT scanned data, and was consistent with the densities of CI chondrites (1.57–1.91 g/cm3). The axial ratios of the grains in Chambers A and C were similar and those of the 724 returned samples and the flying particles ejected during the sampling operations were also similar, suggesting that relatively small Ryugu materials (mm‒cm in size) are similar in shape. The minor difference between the Rygu grains and flying particles could be attributed to events such as scraping during sampling operations and transportation. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3