Equatorial spread-F forecasting model with local factors using the long short-term memory network

Author:

Thammavongsy Phimmasone,Supnithi PornchaiORCID,Myint Lin Min Min,Hozumi Kornyanat,Lakanchanh Donekeo

Abstract

AbstractThe predictability of the nighttime equatorial spread-F (ESF) occurrences is essential to the ionospheric disturbance warning system. In this work, we propose ESF forecasting models using two deep learning techniques: artificial neural network (ANN) and long short-term memory (LSTM). The ANN and LSTM models are trained with the ionogram data from equinoctial months in 2008 to 2018 at Chumphon station (CPN), Thailand near the magnetic equator, where the ESF onset typically occurs, and they are tested with the ionogram data from 2019. These models are trained especially with new local input parameters such as vertical drift velocity of the F-layer height (Vd) and atmospheric gravity waves (AGW) collected at CPN station together with global parameters of solar and geomagnetic activity. We analyze the ESF forecasting models in terms of monthly probability, daily probability and occurrence, and diurnal predictions. The proposed LSTM model can achieve the 85.4% accuracy when the local parameters: Vd and AGW are utilized. The LSTM model outperforms the ANN, particularly in February, March, April, and October. The results show that the AGW parameter plays a significant role in improvements of the LSTM model during post-midnight. When compared to the IRI-2016 model, the proposed LSTM model can provide lower discrepancies from observational data. Graphical Abstract

Funder

King Mongkut's Institute of Technology Ladkrabang

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue “16th International Symposium on Equatorial Aeronomy (ISEA-16), 2022”;Earth, Planets and Space;2024-09-02

2. Clustering of Ionospheric Irregularities based on Spatiotemporal ROTI Keogram Images;2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2024-05-27

3. A Review on Equatorial Ionospheric Irregularities;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3