Application of deep learning-based neural networks using theoretical seismograms as training data for locating earthquakes in the Hakone volcanic region, Japan

Author:

Sugiyama Daisuke,Tsuboi SeijiORCID,Yukutake Yohei

Abstract

AbstractIn the present study, we propose a new approach for determining earthquake hypocentral parameters. This approach integrates computed theoretical seismograms and deep machine learning. The theoretical seismograms are generated through a realistic three-dimensional Earth model, and are then used to create spatial images of seismic wave propagation at the Earth’s surface. These snapshots are subsequently utilized as a training data set for a convolutional neural network. Neural networks for determining hypocentral parameters such as the epicenter, depth, occurrence time, and magnitude are established using the temporal evolution of the snapshots. These networks are applied to seismograms from the seismic observation network in the Hakone volcanic region in Japan to demonstrate the suitability of the proposed approach for locating earthquakes. We demonstrate that the determination accuracy of hypocentral parameters can be improved by including theoretical seismograms for different earthquake locations and sizes, in the learning data set for the deep machine learning. Using the proposed method, the hypocentral parameters are automatically determined within seconds after detecting an event. This method can potentially serve in monitoring earthquake activity in active volcanic areas such as the Hakone region.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3