Author:
Shang Liqun,Guo Hangchen,Zhu Weiwei
Abstract
AbstractPV power production is highly dependent on environmental and weather conditions, such as solar irradiance and ambient temperature. Because of the single control condition and any change in the external environment, the first step response of the converter duty cycle of the traditional MPPT incremental conductance algorithm is not accurate, resulting in misjudgment. To improve the efficiency and economy of PV systems, an improved incremental conductance algorithm of MPPT control strategy is proposed. From the traditional incremental conductance algorithm, this algorithm is simple in structure and can discriminate the instantaneous increment of current, voltage and power when the external environment changes, and so can improve tracking efficiency. MATLAB simulations are carried out under rapidly changing solar radiation level, and the results of the improved and conventional incremental conductance algorithm are compared. The results show that the proposed algorithm can effectively identify the misjudgment and avoid its occurrence. It not only optimizes the system, but also improves the efficiency, response speed and tracking efficiency of the PV system, thus ensuring the stable operation of the power grid.
Funder
Natural Science Basic Research Plan in Shaanxi Province of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Reference24 articles.
1. Ram, J. P., Badu, T. S., & Rajasekar, N. (2017). A comprehensive review on solar PV maximum power point tracking techniques. Renewable and Sustainable Energy Reviews, 67(1), 826–848.
2. Badal, F. R., Purnima, D. A. S., et al. (2019). A survey on control issues in renewable energy integration and microgrid. Protection and Control of Modern Power Systems, 4(1), 87–113.
3. Kadri, R., Gaubert, J. P., & Champenois, G. (2011). An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control. IEEE Transactions on Industrial Electronics, 58(1), 66–75.
4. Chaibi, Y., Allouhi, A., Salhil, M., & El-jouni, A. (2019). Annual performance analysis of different maximum power point tracking techniques used in photovoltaic systems. Protection and Control of Modern Power Systems, 4(2), 171–180.
5. He, Y. Q., Chen, Y. H., et al. (2018). A review on the influence of intelligent power consumption technologies on the utilization rate of distribution network equipment. Protection and Control of Modern Power Systems, 3(2), 183–193.
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献