Abstract
AbstractRecently microgrids have drawn a potential attraction by fulfilling the environmental demands and the increasing energy demands of the end-users. It is necessary to focus on various protection and control aspects of a microgrid. During the transition between the grid-following and grid-forming modes, the voltage and the frequency instability due to the power mismatch condition becomes the major point of concern. Therefore, the paper executes a frequency-active power and voltage-reactive power drooping control strategy for the precise power-sharing among the distributed power generators. Furthermore, to handle the power deficit scenarios and to maintain the system stability, a system independent and priority-based adaptive three-stage load shedding strategy is proposed. The sensitivity of the strategy depends on the system inertia and is computed according to the varying absolute rate-of-change-of-frequency. The strategy incorporates the operation of battery storage system and distributed static compensator (D-STATCOM) in the microgrid, to provide a reliable power supply to the customers for a considerable time instead of a sudden load shedding. The effectiveness of the proposed strategies is investigated on a scaled-down modified IEEE 13-bus microgrid system on the podium of MATLAB 2015b through the time-domain simulation.
Funder
Council of Scientific and Industrial Research, India
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献