Author:
Saikrishna Rajesh,Rajalwal Nilesh Kumar,Ghosh Debomita
Abstract
AbstractPower system faults can often result in excessively high currents. If sustained for a long time, such high currents can damage system equipment. Thus, it is desirable to operate the relays in the minimum possible time. In this paper, a busbar splitting approach is used for adaptive relay setting and co-ordination purposes for a system integrity protection scheme (SIPS). Whenever a fault occurs, the busbar splitting scheme splits a bus to convert a loop into a radial structure. The splitting schemes are chosen such that the net fault current is also reduced. Busbar splitting eliminates the dependency upon minimum breakpoints set (MBPS) and reduces the relay operating time, thus making it adaptive. The proposed methodology is incorporated into the IEEE 14-bus and IEEE 30-bus systems with single and multiple fault conditions. The modeling and simulation carried out in ETAP, and the results of the proposed busbar splitting-based relay co-ordination are compared with the MBPS splitting-based relay co-ordination.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献