A novel hybrid cybersecurity scheme against false data injection attacks in automated power systems

Author:

Hussain Shahbaz,Hussain S. M. SuhailORCID,Hemmati Marziyeh,Iqbal Atif,Alammari Rashid,Zanero Stefano,Ragaini Enrico,Gruosso Giambattista

Abstract

AbstractThe conventional power systems are evolving as smart grids. In recent times cyberattacks on smart grids have been increasing. Among different attacks, False Data Injection (FDI) is considered as an emerging threat that has significant impact. By exploiting the vulnerabilities of IEC 61850 Generic Object-Oriented Substation Events (GOOSE) and Sampled Values (SV) attackers can launch different FDI attacks. In this paper, a real-time set up capable of simulating FDI on GOOSE and SV protocols is developed to evaluate the impact of such attacks on power grid. IEC 62351 stipulates cybersecurity guidelines for GOOSE and SV, but only at communication or Information Technology (IT) level. Hence there is a need to develop a holistic security both at IT and Operation Technology (OT) level. In this regard, a novel sequence content resolver-based hybrid security scheme suitable to tackle FDI attacks on GOOSE and SV is proposed. Furthermore, the computational performance of the proposed hybrid security scheme is presented to demonstrate its applicability to the time critical GOOSE and SV protocols.

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3