Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks

Author:

Chen Bairen,Wu Q. H.,Li Mengshi,Xiahou KaishunORCID

Abstract

AbstractState estimation plays a vital role in the stable operation of modern power systems, but it is vulnerable to cyber attacks. False data injection attacks (FDIA), one of the most common cyber attacks, can tamper with measurement data and bypass the bad data detection (BDD) mechanism, leading to incorrect results of power system state estimation (PSSE). This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks (GECCN), which use topology information, node features and edge features. Through deep graph architecture, the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems. In addition, the edge-conditioned convolution operation allows processing data sets with different graph structures. Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN. Simulation results show that GECCN has better detection performance than convolutional neural networks, deep neural networks and support vector machine. Moreover, the satisfactory detection performance obtained with the data sets of the IEEE 14-bus, 30-bus and 118-bus systems verifies the effective scalability of GECCN.

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3