Abstract
AbstractIn order to accurately evaluate power system stability in a timely manner after faults, and further improve the feature extraction ability of the model, this paper presents an improved transient stability assessment (TSA) method of CNN + GRU. This comprises a convolutional neural network (CNN) and gated recurrent unit (GRU). CNN has the feature extraction capability for a micro short-term time sequence, while GRU can extract characteristics contained in a macro long-term time sequence. The two are integrated to comprehensively extract the high-order features that are contained in a transient process. To overcome the difficulty of sample misclassification, a multiple parallel (MP) CNN + GRU, with multiple CNN + GRU connected in parallel, is created. Additionally, an improved focal loss (FL) function which can implement self-adaptive adjustment according to the neural network training is introduced to guide model training. Finally, the proposed methods are verified on the IEEE 39 and 145-bus systems. The simulation results indicate that the proposed methods have better TSA performance than other existing methods.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献