Time–frequency multiresolution of fault-generated transient signals in transmission lines using a morphological filter

Author:

Quispe Juan CarlosORCID,Morales John,Orduna Eduardo,Liebermann Carlo,Bruhns Michael,Schegner Peter

Abstract

AbstractThe ongoing transformation of electrical power systems highlights the weaknesses of the protection schemes of traditional devices because they are designed and configured according to traditional characteristics of the system. Therefore, this work proposes a new methodology to study the fault-generated high frequency transient signals in transmission lines through multiresolution analysis. The high frequency components are determined by a new digital filtering technique based on mathematical morphology theory and a spectral energy index. Consequently, wide spectra of signals in the time–frequency domain are obtained. The performance of this method is verified on an electrical power system modeled in ATP-Draw, where simulation and test signals are developed for different locations, fault resistances, inception angles, high frequency noises, sampling frequencies, types of faults, and shapes of the structuring element. The results show the characteristics of the fault such as the traveling wave frequency, location, and starting time.

Funder

CONICET

DAAD

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3