Abstract
AbstractTo improve the robustness and performance of the dynamic response of a cage asynchronous motor, a direct torque control (DTC) based on sliding mode control (SMC) is adopted to replace traditional proportional-integral (PI) and hysteresis comparators. The combination of the proposed strategy with sinusoidal pulse width modulation (SPWM) applied to a three-level neutral point clamped (NPC) inverter brings many advantages such as a reduction in harmonics, and precise and rapid tracking of the references. Simulations are performed for a three-level inverter with SM-DTC, a two-level inverter with SM-DTC and the three-level inverter with PI-DTC-SPWM. The results show that the SM-DTC method achieves better performance in terms of reference tracking, while adoption of the three-level inverter topology can effectively reduce the ripples. Applying the SM-DTC to the three-level inverter presents the best solution for achieving efficient and robust control. In addition, the use of a sliding mode speed estimator eliminates the mechanical sensor and this increases the reliability of the system.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献