Asymmetric GARCH type models for asymmetric volatility characteristics analysis and wind power forecasting

Author:

Chen HaoORCID,Zhang Jianzhong,Tao Yubo,Tan Fenglei

Abstract

AbstractWind power forecasting is of great significance to the safety, reliability and stability of power grid. In this study, the GARCH type models are employed to explore the asymmetric features of wind power time series and improved forecasting precision. Benchmark Symmetric Curve (BSC) and Asymmetric Curve Index (ACI) are proposed as new asymmetric volatility analytical tool, and several generalized applications are presented. In the case study, the utility of the GARCH-type models in depicting time-varying volatility of wind power time series is demonstrated with the asymmetry effect, verified by the asymmetric parameter estimation. With benefit of the enhanced News Impact Curve (NIC) analysis, the responses in volatility to the magnitude and the sign of shocks are emphasized. The results are all confirmed to be consistent despite varied model specifications. The case study verifies that the models considering the asymmetric effect of volatility benefit the wind power forecasting performance.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

Reference21 articles.

1. Ding, T., Wu, Z., Lv, J., et al. (2016). Robust co-optimization to energy and ancillary service joint dispatch considering wind power uncertainties in real-time electricity markets. IEEE Transactions on Sustainable Energy, 7(4), 1547–1557.

2. Li, J., Wang, S., Ye, L., et al. (2018). A coordinated dispatch method withpumped-storage and battery-storage forcompensating the variation of wind power protection and control of modern power systems. Protection and control of modern power Systems, 3(2), 1–14.

3. Global wind report annual market update 2017. http://files.gwec.net/register/success/?file=/files/GWR2017.pdf. Accessed 2 Apr 2018.

4. Ye, R., Suganthan, P. N., & Srikanth, N. (2015). Ensemble methods for wind and solar power forecasting-a state-of-the-art review. Renewable and Sustainable Energy Reviews, 50, 82–91.

5. KLange, M., & Focken, U. (2009). Physical approach to short term wind power prediction. New York: Springer-Verlag.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3