Bi-level stackelberg game-based distribution system expansion planning model considering long-term renewable energy contracts

Author:

Gao Hongjun,Wang Renjun,He ShuaijiaORCID,Wang Zeqi,Liu Junyong

Abstract

AbstractWith the deregulation of electricity market in distribution systems, renewable distributed generations (RDG) are being invested in by third-party social capital, such as distributed generations operators (DGOs) and load aggregators (LAs). However, their arbitrary RDG investment and electricity trading behavior can bring great challenges to distribution system planning. In this paper, to reduce distribution system investment, a distribution system expansion planning model based on a bi-level Stackelberg game is proposed for the distribution system operator (DSO) to guide this social capital to make suitable RDG investment. In the proposed model, DSO is the leader, while DGOs and LAs are the followers. In the upper level, the DSO determines the expansion planning scheme including investments in substations and lines, and optimizes the variables provided for followers, such as RDG locations and contract prices. In the lower level, DGOs determine the RDG capacity and electricity trading strategy based on the RDG locations and contract prices, while LAs determine the RDG capacity, demand response and electricity trading strategy based on contract prices. The capacity information of the DRG is sent to the DSO for decision-making on expansion planning. To reduce the cost and risk of multiple agents, two long-term renewable energy contracts are introduced for the electricity trading. Conditional value-at-risk method is used to quantify the RDG investment risk of DGOs and LAs with different risk preferences. The effectiveness of the proposed model and method is verified by studies using the Portugal 54-bus system.

Funder

National Science Foundation of China

Sichuan Science and Technology Program

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3