Abstract
Abstract
This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluation indexes such as forecast deviation, simultaneity factor and anti-peak rate, also newly introduced evaluation indexes such as installed capacity, power adequacy and accommodation space. Bayesian weight modified method is used for solving index weights of 8 wind power accommodation indexes. The paper puts forward a comprehensive evaluation model of wind power accommodation ability based on improved radar chart method, and this model changes traditional radar chart fan-shaped sector to quadrilateral evaluation region, and increasing angle bisector can solve the problem that evaluation results are not unique. It constructs new area and perimeter vectors of radar chart, which make the evaluation results give consideration to level of aggregation and balance degree of evaluation objectives, and case study results show that this model has a certain practical value.
Funder
National Key Research and Development Program Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality
Reference32 articles.
1. Wen, J., Zheng, Y., & Donghan, F. (2009). A review on reliability assessment for wind power. Renewable and Sustainable Energy Reviews, 13(9), 2485–2294.
2. IEA. (2015). World energy outlook 2015. Paris: International Energy Agency.
3. Xue, Y., Lei, X., Xue, F., et al. (2014). A review on impacts of wind power uncertainties on power systems. Proceedings of the CSEE, 34(29), 5029–5040.
4. Ummels, B. C., Gibescu, M., Pelgrum, E., et al. (2007). Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Transactions on Energy Conversion, 22(1), 44–51.
5. Abreu, L. V. L., Khodayar, M. E., Shahidehpour, M., et al. (2012). Risk-constrained coordination of cascaded hydro units with variable wind power generation. IEEE Transactions on Sustainable Energy, 3(3), 359–368.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献