Static information, K-neighbor, and self-attention aggregated scheme: a transient stability prediction model with enhanced interpretability

Author:

Chen LiukaiORCID,Guan LinORCID

Abstract

AbstractData-driven preventive scanning for transient stability assessment (DTSA) is a faster and more efficient solution than time-domain simulation (TDS). However, most current methods cannot balance generalization to different topologies and interpretability, with simple output. A model that conforms to the physical mechanism and richer label for transient stability can increase confidence in DTSA. Thus a static-information, k-neighbor, and self-attention aggregated schema (SKETCH) is proposed in this paper. Taking only static measurements as input, SKETCH gives several explanations that are consistent with the physical mechanisms of TSA and provides results for all generator stability while predicting system stability. A module based on the self-attention mechanism is designed to solve the locality problem of a graph neural network (GNN), achieving subgraph equivalence outside the k-order neighborhood. Test results on the IEEE 39-bus system and IEEE 300-bus system indicate the superiority of SKETCH and also demonstrate the rich sample interpretation results.

Funder

National Natural Science Foundation of China

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3