Author:
Lu Yucheng,Lv Baotao,Song Qimin
Abstract
Abstract
Background
Spinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. Transcranial electrical stimulation motor-evoked potentials were measured to enable their use in future studies on spinal cord ischaemia protection.
Methods
Thirty-three New Zealand rabbits were randomly divided into 6 groups. Transcranial electrical stimulation motor-evoked potentials were recorded before vascular ligation, 30 min after vascular ligation, and 2 days after vascular ligation. Motor functions were assessed after surgery and 2 days after vascular ligation. The specimens were taken 2 days after ligation for histopathologic observation.
Results
With increased numbers of ligations, a transient extension of the latency became clear, but there were no significant differences in the statistical analysis. Analysis of variance after ligation at the same time in each group and t tests before and after ligation (P > 0.05) were not significant. One or 2 ligations did not cause spinal cord ischaemic damage. There were no significant differences before and after ligation for the amplitude (P > 0.05). With increased numbers of ligations, the amplitude before and after ligation was gradually reduced in the 3–5 ligation groups (P < 0.05).
Conclusions
Ligation of segmental spinal cord vessels on 1 or 2 levels did not cause ischaemic damage. Spinal cord ischaemia was observed after 3, 4, or 5 ligations. The amplitude was more sensitive to spinal cord ischaemia than latency. Spinal cord function can be predicted by early changes in the amplitude.
Funder
The fund of the health department of Shandong province
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),Neurology,Surgery
Reference24 articles.
1. Legatt AD, Fried SJ, Amaral TD, et al. Loss of lower limb motor evoked potentials and spinal cord injury during the initial exposure in scoliosis surgery. J Clin Neurophysiol. 2014;31(2):e1–5.
2. Gazzeri R, Faiola A, Neroni M, et al. Safety of intraoperative electrophysiological monitoring (TES and EMG) for spinal and cranial lesions. Surg Technol Int. 2013;23(XXIII):296–306.
3. Basoglu H, Kurtoglu T, Cetin NK, et al. Assessment of in vivo spinal cord conduction velocity in rats in an experimental model of ischemic spinal cord injury. Spinal Cord. 2013;51(8):616–22.
4. Wang M, Meng F, Song Q, et al. Changes in transcranial electrical motor-evoked potentials during the early and reversible stage of permanent spinal cord ischemia predict spinal cord injury in a rabbit animal model. Exp Ther Med. 2017;14(6):5429–37.
5. Pastorelli F, Silvestre MD, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(1 Supplement):105–14.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献