Transcranial electrical stimulation motor-evoked potentials in a spinal cord ischaemia rabbit model

Author:

Lu Yucheng,Lv Baotao,Song Qimin

Abstract

Abstract Background Spinal cord ischaemia animal models were established by selective ligation of the lumbar artery in a craniocaudal direction between the renal artery and the aortic bifurcation. Transcranial electrical stimulation motor-evoked potentials were measured to enable their use in future studies on spinal cord ischaemia protection. Methods Thirty-three New Zealand rabbits were randomly divided into 6 groups. Transcranial electrical stimulation motor-evoked potentials were recorded before vascular ligation, 30 min after vascular ligation, and 2 days after vascular ligation. Motor functions were assessed after surgery and 2 days after vascular ligation. The specimens were taken 2 days after ligation for histopathologic observation. Results With increased numbers of ligations, a transient extension of the latency became clear, but there were no significant differences in the statistical analysis. Analysis of variance after ligation at the same time in each group and t tests before and after ligation (P > 0.05) were not significant. One or 2 ligations did not cause spinal cord ischaemic damage. There were no significant differences before and after ligation for the amplitude (P > 0.05). With increased numbers of ligations, the amplitude before and after ligation was gradually reduced in the 3–5 ligation groups (P < 0.05). Conclusions Ligation of segmental spinal cord vessels on 1 or 2 levels did not cause ischaemic damage. Spinal cord ischaemia was observed after 3, 4, or 5 ligations. The amplitude was more sensitive to spinal cord ischaemia than latency. Spinal cord function can be predicted by early changes in the amplitude.

Funder

The fund of the health department of Shandong province

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology,Surgery

Reference24 articles.

1. Legatt AD, Fried SJ, Amaral TD, et al. Loss of lower limb motor evoked potentials and spinal cord injury during the initial exposure in scoliosis surgery. J Clin Neurophysiol. 2014;31(2):e1–5.

2. Gazzeri R, Faiola A, Neroni M, et al. Safety of intraoperative electrophysiological monitoring (TES and EMG) for spinal and cranial lesions. Surg Technol Int. 2013;23(XXIII):296–306.

3. Basoglu H, Kurtoglu T, Cetin NK, et al. Assessment of in vivo spinal cord conduction velocity in rats in an experimental model of ischemic spinal cord injury. Spinal Cord. 2013;51(8):616–22.

4. Wang M, Meng F, Song Q, et al. Changes in transcranial electrical motor-evoked potentials during the early and reversible stage of permanent spinal cord ischemia predict spinal cord injury in a rabbit animal model. Exp Ther Med. 2017;14(6):5429–37.

5. Pastorelli F, Silvestre MD, Plasmati R, et al. The prevention of neural complications in the surgical treatment of scoliosis: the role of the neurophysiological intraoperative monitoring. Eur Spine J. 2011;20(1 Supplement):105–14.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3