Author:
Putnam Andrew J,Schulz Veronique V,Freiter Eric M,Bill Heather M,Miranti Cindy K
Abstract
Abstract
Background
Integrins, cell-surface receptors that mediate adhesive interactions between cells and the extracellular matrix (ECM), play an important role in cancer progression. Expression of the vitronectin receptor αvβ3 integrin correlates with increased invasive and metastatic capacity of malignant melanomas, yet it remains unclear how expression of this integrin triggers melanoma invasion and metastasis.
Results
Two melanoma cell lines C8161.9 and M14 both express high levels of αvβ3 integrin and adhere to vitronectin. However, only the highly metastatic C8161.9 cells are capable of invading vitronectin-enriched Matrigel in an αvβ3-depenent manner. Elevated levels of PKCα and PKCδ, and activated Src were detected specifically in the highly metastatic melanoma cells, but not in the low metastatic M14 cells. Inhibition of Src or PKC activity suppressed αvβ3-dependent invasion. Furthermore, over expression of Src or PKCα and PKCδ was sufficient to confer αvβ3-dependent invasiveness to M14 cells. Stress fiber formation and focal adhesion formation were almost completely absent in C8161.9 cells compared to M14 cells. Inhibition of Src signaling was sufficient to restore normal actin architecture, and resulted in decreased p190RhoGAP phosphorylation and enhanced RhoA activity. Src had no effect on Rac activity. Loss of PKCα expression, but not PKCδ, by siRNA inhibited Rac and PAK activity as well as invasiveness. Loss of PKCα restored focal adhesion formation and partially restored stress fiber formation, while loss of PKCδ primarily restored stress fibers.
Conclusion
The misregulated expression of PKCα and PKCδ and elevated Src activity in metastatic melanoma cells is required for efficient αvβ3-mediated invasion. PKCα and Src enhance αvβ3-mediated invasion in part by increasing the GTPase activity of Rac relative to RhoA. PKCα influences focal adhesion formation, while PKCδ controls stress fibers.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Molecular Biology,Biochemistry
Reference57 articles.
1. Chin L: The genetics of malignant melanoma: lessons from mouse and man. Nat Rev Cancer. 2003, 3: 559-570.
2. Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA: Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res. 1990, 50: 6757-6764.
3. Van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry Dt, Schuchter L, Van Belle TJ, Albelda S, Tahin P, Herlyn M, Elder DE: Progression-related expression of beta3 integrin in melanomas and nevi. Hum Pathol. 1999, 30: 562-567.
4. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA: Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest. 1992, 89: 2018-2022.
5. Hsu MY, Shih DT, Meier FE, Van Belle P, Hsu JY, Elder DE, Buck CA, Herlyn M: Adenoviral gene transfer of beta3 integrin subunit induces conversion from radial to vertical growth phase in primary human melanoma. Am J Pathol. 1998, 153: 1435-1442.