Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity

Author:

Amaral Sylvia S,Oliveira André G,Marques Pedro E,Quintão Jayane L D,Pires Daniele A,Resende Rodrigo R,Sousa Bruna R,Melgaço Juliana G,Pinto Marcelo A,Russo Remo C,Gomes Ariane k C,Andrade Lidia M,Zanin Rafael F,Pereira Rafaela V S,Bonorino Cristina,Soriani Frederico M,Lima Cristiano X,Cara Denise C,Teixeira Mauro M,Leite Maria F,Menezes Gustavo B

Abstract

Abstract Background Adenosine triphosphate (ATP) is secreted from hepatocytes under physiological conditions and plays an important role in liver biology through the activation of P2 receptors. Conversely, higher extracellular ATP concentrations, as observed during necrosis, trigger inflammatory responses that contribute to the progression of liver injury. Impaired calcium (Ca2+) homeostasis is a hallmark of acetaminophen (APAP)-induced hepatotoxicity, and since ATP induces mobilization of the intracellular Ca2+ stocks, we evaluated if the release of ATP during APAP-induced necrosis could directly contribute to hepatocyte death. Results APAP overdose resulted in liver necrosis, massive neutrophil infiltration and large non-perfused areas, as well as remote lung inflammation. In the liver, these effects were significantly abrogated after ATP metabolism by apyrase or P2X receptors blockage, but none of the treatments prevented remote lung inflammation, suggesting a confined local contribution of purinergic signaling into liver environment. In vitro, APAP administration to primary mouse hepatocytes and also HepG2 cells caused cell death in a dose-dependent manner. Interestingly, exposure of HepG2 cells to APAP elicited significant release of ATP to the supernatant in levels that were high enough to promote direct cytotoxicity to healthy primary hepatocytes or HepG2 cells. In agreement to our in vivo results, apyrase treatment or blockage of P2 receptors reduced APAP cytotoxicity. Likewise, ATP exposure caused significant higher intracellular Ca2+ signal in APAP-treated primary hepatocytes, which was reproduced in HepG2 cells. Quantitative real time PCR showed that APAP-challenged HepG2 cells expressed higher levels of several purinergic receptors, which may explain the hypersensitivity to extracellular ATP. This phenotype was confirmed in humans analyzing liver biopsies from patients diagnosed with acute hepatic failure. Conclusion We suggest that under pathological conditions, ATP may act not only an immune system activator, but also as a paracrine direct cytotoxic DAMP through the dysregulation of Ca2+ homeostasis.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3