Identification of genetic variants associated with diabetic kidney disease in multiple Korean cohorts via a genome-wide association study mega-analysis

Author:

Jin Heejin,Kim Ye An,Lee Young,Kwon Seung-hyun,Do Ah Ra,Seo Sujin,Won Sungho,Seo Je HyunORCID

Abstract

Abstract Background The pathogenesis of diabetic kidney disease (DKD) is complex, involving metabolic and hemodynamic factors. Although DKD has been established as a heritable disorder and several genetic studies have been conducted, the identification of unique genetic variants for DKD is limited by its multiplex classification based on the phenotypes of diabetes mellitus (DM) and chronic kidney disease (CKD). Thus, we aimed to identify the genetic variants related to DKD that differentiate it from type 2 DM and CKD. Methods We conducted a large-scale genome-wide association study mega-analysis, combining Korean multi-cohorts using multinomial logistic regression. A total of 33,879 patients were classified into four groups—normal, DM without CKD, CKD without DM, and DKD—and were further analyzed to identify novel single-nucleotide polymorphisms (SNPs) associated with DKD. Additionally, fine-mapping analysis was conducted to investigate whether the variants of interest contribute to a trait. Conditional analyses adjusting for the effect of type 1 DM (T1D)-associated HLA variants were also performed to remove confounding factors of genetic association with T1D. Moreover, analysis of expression quantitative trait loci (eQTL) was performed using the Genotype-Tissue Expression project. Differentially expressed genes (DEGs) were analyzed using the Gene Expression Omnibus database (GSE30529). The significant eQTL DEGs were used to explore the predicted interaction networks using search tools for the retrieval of interacting genes and proteins. Results We identified three novel SNPs [rs3128852 (P = 8.21×10−25), rs117744700 (P = 8.28×10−10), and rs28366355 (P = 2.04×10−8)] associated with DKD. Moreover, the fine-mapping study validated the causal relationship between rs3128852 and DKD. rs3128852 is an eQTL for TRIM27 in whole blood tissues and HLA-A in adipose-subcutaneous tissues. rs28366355 is an eQTL for HLA-group genes present in most tissues. Conclusions We successfully identified SNPs (rs3128852, rs117744700, and rs28366355) associated with DKD and verified the causal association between rs3128852 and DKD. According to the in silico analysis, TRIM27 and HLA-A can define DKD pathophysiology and are associated with immune response and autophagy. However, further research is necessary to understand the mechanism of immunity and autophagy in the pathophysiology of DKD and to prevent and treat DKD.

Funder

Veterans Health Service Medical Center

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pathomechanisms of Diabetic Kidney Disease;Journal of Clinical Medicine;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3