Abstract
Abstract
Background
Ovarian cancer causes 151,900 deaths per year worldwide. Treatment and prognosis are primarily determined by the histopathologic interpretation in combination with molecular diagnosis. However, the relationship between histopathology patterns and molecular alterations is not fully understood, and it is difficult to predict patients’ chemotherapy response using the known clinical and histological variables.
Methods
We analyzed the whole-slide histopathology images, RNA-Seq, and proteomics data from 587 primary serous ovarian adenocarcinoma patients and developed a systematic algorithm to integrate histopathology and functional omics findings and to predict patients’ response to platinum-based chemotherapy.
Results
Our convolutional neural networks identified the cancerous regions with areas under the receiver operating characteristic curve (AUCs) > 0.95 and classified tumor grade with AUCs > 0.80. Functional omics analysis revealed that expression levels of proteins participated in innate immune responses and catabolic pathways are associated with tumor grade. Quantitative histopathology analysis successfully stratified patients with different response to platinum-based chemotherapy (P = 0.003).
Conclusions
These results indicated the potential clinical utility of quantitative histopathology evaluation in tumor cell detection and chemotherapy response prediction. The developed algorithm is easily extensible to other tumor types and treatment modalities.
Funder
Brigham and Women's Hospital
Partners Healthcare
Harvard Medical School
Harvard University
Publisher
Springer Science and Business Media LLC
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献