Abstract
Abstract
Background
Classification of primary central nervous system tumors according to the World Health Organization guidelines follows the integration of histologic interpretation with molecular information and aims at providing the most precise prognosis and optimal patient management. According to the cIMPACT-NOW update 3, diffuse isocitrate dehydrogenase-wild type (IDH-WT) gliomas should be graded as grade IV glioblastomas (GBM) if they possess one or more of the following molecular markers that predict aggressive clinical course: EGFR amplification, TERT promoter mutation, and whole-chromosome 7 gain combined with chromosome 10 loss.
Methods
The Cancer Genome Atlas (TCGA) glioma expression datasets were reanalyzed in order to identify novel tumor subcategories which would be considered as GBM-equivalents with the current diagnostic algorithm. Unsupervised clustering allowed the identification of previously unrecognized transcriptomic subcategories. A supervised machine learning algorithm (k-nearest neighbor model) was also used to identify gene signatures specific to some of these subcategories.
Results
We identified 14 IDH-WT infiltrating gliomas displaying a “normal-like” (NL) transcriptomic profile associated with a longer survival. Genes such as C5AR1 (complement receptor), SLC32A1 (vesicular gamma-aminobutyric acid transporter), MSR1 (or CD204, scavenger receptor A), and SYT5 (synaptotagmin 5) were differentially expressed and comprised in gene signatures specific to NL IDH-WT gliomas which were validated further using the Chinese Glioma Genome Atlas datasets. These gene signatures showed high discriminative power and correlation with survival.
Conclusion
NL IDH-WT gliomas represent an infiltrating glioma subcategory with a superior prognosis which can only be detected using genome-wide analysis. Differential expression of genes potentially involved in immune checkpoint and amino acid signaling pathways is providing insight into mechanisms of gliomagenesis and could pave the way to novel treatment targets for infiltrating gliomas.
Funder
Fonds de Recherche du Québec - Santé
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献