Ethical and regulatory issues of stem cell-derived 3-dimensional organoid and tissue therapy for personalised regenerative medicine

Author:

Harris Alexander R.ORCID,Walker Mary Jean,Gilbert Frederic

Abstract

Abstract Background Regenerative medicine has the potential to treat genetic disorders and replace damaged or missing tissue. The use of donor or animal tissue raises many well-known issues, including limited tissue availability, the possibility of rejection and patient infection. Stem cell therapy raised hope of overcoming these issues, but created new risks including tumour formation and limited benefit if the desired target tissue does not form. The recent development of 3-dimensional tissues, including organoids, allows the creation of more complex tissues for personalised regenerative medicine. Methods This article details the potential health risks of 3-dimensional organoid and tissue therapy versus dissociated stem cell therapy. The current ethical and regulatory issues surrounding 3-dimensional organoid and tissue therapy are presented with a focus on the highly influential FDA and International Society of Stem Cell Research (ISSCR) guidelines. Conclusions The potential use of 3-dimensional organoid and tissue therapy may deliver greater patient benefits than other regenerative medicine approaches, but raises new health and ethical risks. Preclinical testing of these therapies will not mitigate some of their risks; they may only be understood after first-in-human trials. The potential irreversibility and high risk of these therapies affects how clinical trials should be structured, including post-trial care for participants.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference71 articles.

1. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36(5):432–41.

2. https://www.tmd.ac.jp/press-release/20220707-1/. 2022.

3. National Acadamy of Sciences. Guidelines for human embryonic stem cell research. Washington, D.C.; 2005.

4. National Acadamy of Sciences. The emerging field of human neural organoids, transplants, and chimeras. The emerging field of human neural Organoids, transplants, and chimeras; 2021.

5. Directorate-General for Health and Food Safety, European Commission. Proposal for a Regulation of the European Parliament and of the Council on standards of quality and safety for substances of human origin intended for human application and repealing Directives 2002/98/EC and 2004/23/EC. Brussels; 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3