How to design a pre-specified statistical analysis approach to limit p-hacking in clinical trials: the Pre-SPEC framework

Author:

Kahan Brennan C.,Forbes Gordon,Cro Suzie

Abstract

AbstractResults from clinical trials can be susceptible to bias if investigators choose their analysis approach after seeing trial data, as this can allow them to perform multiple analyses and then choose the method that provides the most favourable result (commonly referred to as ‘p-hacking’). Pre-specification of the planned analysis approach is essential to help reduce such bias, as it ensures analytical methods are chosen in advance of seeing the trial data. For this reason, guidelines such as SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials) and ICH-E9 (International Conference for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) require the statistical methods for a trial’s primary outcome be pre-specified in the trial protocol. However, pre-specification is only effective if done in a way that does not allow p-hacking. For example, investigators may pre-specify a certain statistical method such as multiple imputation, but give little detail on how it will be implemented. Because there are many different ways to perform multiple imputation, this approach to pre-specification is ineffective, as it still allows investigators to analyse the data in different ways before deciding on a final approach. In this article, we describe a five-point framework (the Pre-SPEC framework) for designing a pre-specified analysis approach that does not allow p-hacking. This framework was designed based on the principles in the SPIRIT and ICH-E9 guidelines and is intended to be used in conjunction with these guidelines to help investigators design the statistical analysis strategy for the trial’s primary outcome in the trial protocol.

Funder

UK Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3