Author:
Bao Siqi,Zhou Tong,Yan Congcong,Bao Jiale,Yang Fan,Chao Shan,Zhou Meng,Xu Zhangye
Abstract
Abstract
Background
Preeclampsia (PE) is a multisystemic maternal syndrome with substantial maternal and fetal morbidity and mortality. Currently, there is no clinically viable non-invasive biomarker assay for early detection, thus limiting the effective prevention and therapeutic strategies for PE.
Methods
We conducted a discovery–training–validation three-phase retrospective and prospective study with cross-platform and multicenter cohorts. The initial biomarkers were discovered and verified in tissue specimens by small RNA sequencing and qRT-PCR. A miRNA signature (miR2PE-score) was developed using Firth’s bias-reduced logistic regression analysis and subsequently validated in two independent multinational retrospective cohorts and two prospective plasma cohorts.
Results
We initially identified five PE-associated differentially expressed miRNAs from miRNA sequencing data and subsequently validated two miRNAs (miR-196b-5p and miR-584-5p) as robust biomarkers by association analysis with clinical characteristics and qRT-PCR in tissue specimens in the discovery phase. Using Firth’s bias-reduced logistic regression analysis, we developed the miR2PE-score for the early detection of PE. The miR2PE-score showed a high diagnostic performance with an area under the receiver operating characteristic curve (AUROC) of 0.920, 0.848, 0.864, and 0.812 in training, internal, and two external validation cross-platform and multicenter cohorts, respectively. Finally, we demonstrated the non-invasive diagnostic performance of the miR2PE-score in two prospective plasma cohorts with AUROC of 0.933 and 0.787. Furthermore, the miR2PE-score revealed superior performance in non-invasive diagnosis compared with previously published miRNA biomarkers.
Conclusions
We developed and validated a novel and robust blood-based miRNA signature, which may serve as a promising clinically applicable non-invasive tool for the early detection of PE.
Graphical Abstract
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献