Abstract
Abstract
Background
Long noncoding RNAs (lncRNAs) have emerged as important regulators in a variety of human diseases. The dysregulation of liver sinusoidal endothelial cell (LSEC) phenotype is a critical early event in the fibrotic process. However, the biological function of lncRNAs in LSEC still remains unclear.
Methods
The expression level of lncRNA Airn was evaluated in both human fibrotic livers and serums, as well as mouse fibrotic livers. Gain- and loss-of-function experiments were performed to detect the effect of Airn on LSEC differentiation and hepatic stellate cell (HSC) activation in liver fibrosis. Furthermore, RIP, RNA pull-down-immunoblotting, and ChIP experiments were performed to explore the underlying mechanisms of Airn.
Results
We have identified Airn was significantly upregulated in liver tissues and LSEC of carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Moreover, the expression of AIRN in fibrotic human liver tissues and serums was remarkably increased compared with healthy controls. In vivo studies showed that Airn deficiency aggravated CCl4- and bile duct ligation (BDL)-induced liver fibrosis, while Airn over-expression by AAV8 alleviated CCl4-induced liver fibrosis. Furthermore, we revealed that Airn maintained LSEC differentiation in vivo and in vitro. Additionally, Airn inhibited HSC activation indirectly by regulating LSEC differentiation and promoted hepatocyte (HC) proliferation by increasing paracrine secretion of Wnt2a and HGF from LSEC. Mechanistically, Airn interacted with EZH2 to maintain LSEC differentiation through KLF2-eNOS-sGC pathway, thereby maintaining HSC quiescence and promoting HC proliferation.
Conclusions
Our work identified that Airn is beneficial to liver fibrosis by maintaining LSEC differentiation and might be a serum biomarker for liver fibrogenesis.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin City
Publisher
Springer Science and Business Media LLC
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献