Abstract
Abstract
Background
There is substantial burden of seasonal influenza in Kenya, which led the government to consider introducing a national influenza vaccination programme. Given the cost implications of a nationwide programme, local economic evaluation data are needed to inform policy on the design and benefits of influenza vaccination. We set out to estimate the cost-effectiveness of seasonal influenza vaccination in Kenya.
Methods
We fitted an age-stratified dynamic transmission model to active surveillance data from patients with influenza from 2010 to 2018. Using a societal perspective, we developed a decision tree cost-effectiveness model and estimated the incremental cost-effectiveness ratio (ICER) per disability-adjusted life year (DALY) averted for three vaccine target groups: children 6–23 months (strategy I), 2–5 years (strategy II) and 6–14 years (strategy III) with either the Southern Hemisphere influenza vaccine (Strategy A) or Northern Hemisphere vaccine (Strategy B) or both (Strategy C: twice yearly vaccination campaigns, or Strategy D: year-round vaccination campaigns). We assessed cost-effectiveness by calculating incremental net monetary benefits (INMB) using a willingness-to-pay (WTP) threshold of 1–51% of the annual gross domestic product per capita ($17–$872).
Results
The mean number of infections across all ages was 2–15 million per year. When vaccination was well timed to influenza activity, the annual mean ICER per DALY averted for vaccinating children 6–23 months ranged between $749 and $1385 for strategy IA, $442 and $1877 for strategy IB, $678 and $4106 for strategy IC and $1147 and $7933 for strategy ID. For children 2–5 years, it ranged between $945 and $1573 for strategy IIA, $563 and $1869 for strategy IIB, $662 and $4085 for strategy IIC, and $1169 and $7897 for strategy IID. For children 6–14 years, it ranged between $923 and $3116 for strategy IIIA, $1005 and $2223 for strategy IIIB, $883 and $4727 for strategy IIIC and $1467 and $6813 for strategy IIID. Overall, no vaccination strategy was cost-effective at the minimum ($17) and median ($445) WTP thresholds. Vaccinating children 6–23 months once a year had the highest mean INMB value at $872 (WTP threshold upper limit); however, this strategy had very low probability of the highest net benefit.
Conclusion
Vaccinating children 6–23 months once a year was the most favourable vaccination option; however, the strategy is unlikely to be cost-effective given the current WTP thresholds.
Funder
Carnegie Corporation of New York
Sida
DELTAS Africa Initiative
Deutscher Akademischer Austauschdienst
Tropical Diseases Modelling (TDMOD) network
National Institute for Health Research
HDR UK Innovation Fellowship
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Dawa JA, Chaves SS, Nyawanda B, Njuguna HN, Makokha C, Otieno NA, et al. National burden of hospitalized and non-hospitalized influenza-associated severe acute respiratory illness in Kenya, 2012-2014. Influenza Other Respir Viruses. 2018;12(1):30–7.
2. Emukule GO, Paget J, van der Velden K, Mott JA. Influenza-Associated Disease Burden in Kenya: A Systematic Review of Literature. PLoS One. 2015;10(9):1–14.
3. Office of Director of Medical Services Ministry of Health. Communication to stakeholders: Progress update on plans to introduce influenza vaccine into routine immunization in Kenya. Nairobi: Ministry of Health, Kenya; 2016.
4. Dawa J, Chaves SS, Ba Nguz A, Kalani R, Anyango E, Mutie D, et al. Developing a seasonal influenza vaccine recommendation in Kenya: process and challenges faced by the National Immunization Technical Advisory Group (NITAG). Vaccine. 2019;37(3):464–72.
5. Ott JJ, Klein Breteler J, Tam JS, Hutubessy RC, Jit M, de Boer MR. Influenza vaccines in low and middle income countries: a systematic review of economic evaluations. Hum Vaccines Immunotherapeutics. 2013;9(7):1500–11.