Cord blood epigenome-wide meta-analysis in six European-based child cohorts identifies signatures linked to rapid weight growth

Author:

Alfano Rossella,Zugna Daniela,Barros Henrique,Bustamante Mariona,Chatzi Leda,Ghantous Akram,Herceg Zdenko,Keski-Rahkonen Pekka,de Kok Theo M.,Nawrot Tim S,Relton Caroline L,Robinson Oliver,Roumeliotaki Theano,Scalbert Augustin,Vrijheid Martine,Vineis Paolo,Richiardi Lorenzo,Plusquin Michelle

Abstract

Abstract Background Rapid postnatal growth may result from exposure in utero or early life to adverse conditions and has been associated with diseases later in life and, in particular, with childhood obesity. DNA methylation, interfacing early-life exposures and subsequent diseases, is a possible mechanism underlying early-life programming. Methods Here, a meta-analysis of Illumina HumanMethylation 450K/EPIC-array associations of cord blood DNA methylation at single CpG sites and CpG genomic regions with rapid weight growth at 1 year of age (defined with reference to WHO growth charts) was conducted in six European-based child cohorts (ALSPAC, ENVIRONAGE, Generation XXI, INMA, Piccolipiù, and RHEA, N = 2003). The association of gestational age acceleration (calculated using the Bohlin epigenetic clock) with rapid weight growth was also explored via meta-analysis. Follow-up analyses of identified DNA methylation signals included prediction of rapid weight growth, mediation of the effect of conventional risk factors on rapid weight growth, integration with transcriptomics and metabolomics, association with overweight in childhood (between 4 and 8 years), and comparison with previous findings. Results Forty-seven CpGs were associated with rapid weight growth at suggestive p-value <1e−05 and, among them, three CpGs (cg14459032, cg25953130 annotated to ARID5B, and cg00049440 annotated to KLF9) passed the genome-wide significance level (p-value <1.25e−07). Sixteen differentially methylated regions (DMRs) were identified as associated with rapid weight growth at false discovery rate (FDR)-adjusted/Siddak p-values < 0.01. Gestational age acceleration was associated with decreasing risk of rapid weight growth (p-value = 9.75e−04). Identified DNA methylation signals slightly increased the prediction of rapid weight growth in addition to conventional risk factors. Among the identified signals, three CpGs partially mediated the effect of gestational age on rapid weight growth. Both CpGs (N=3) and DMRs (N=3) were associated with differential expression of transcripts (N=10 and 7, respectively), including long non-coding RNAs. An AURKC DMR was associated with childhood overweight. We observed enrichment of CpGs previously reported associated with birthweight. Conclusions Our findings provide evidence of the association between cord blood DNA methylation and rapid weight growth and suggest links with prenatal exposures and association with childhood obesity providing opportunities for early prevention.

Funder

Bijzonder Onderzoeksfonds Hasselt University

UK Research and Innovation

HORIZON EUROPE Framework Programme

FP7 Environment

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference86 articles.

1. WHO Consultation on Obesity (1999: Geneva, Switzerland) & World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation: World Health Organization; 2000. https://apps.who.int/iris/handle/10665/42330

2. Development Initiatives. 2018 Global Nutrition Report: Shining a Light to Spur Action on Nutrition. Bristol: Development Initiatives Poverty Research Ltd; 2018. https://globalnutritionreport.org/

3. Cena H, Fiechtner L, Vincenti A, Magenes VC, De Giuseppe R, Manuelli M, et al. COVID-19 pandemic as risk factors for excessive weight gain in pediatrics: the role of changes in nutrition behavior. A narrative review. Nutrients. 2021;13(12):4255.

4. Rankin J, Matthews L, Cobley S, Han A, Sanders R, Wiltshire HD, et al. Psychological consequences of childhood obesity: psychiatric comorbidity and prevention. Adolesc Health Med Ther. 2016;7:125–46.

5. Lang JE, Bunnell HT, Hossain MJ, Wysocki T, Lima JJ, Finkel TH, et al. Being overweight or obese and the development of asthma. Pediatrics. 2018;142(6):e20182119.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3